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Abstract

Research on mechanisms of drug action, and preclinical screening of molecules with a potential activity on neuropathic pain requires extensive
animal work. The chronic constriction injury model is one of the best-characterized models of neuropathic pain behavior in rats, but requires
extensive time consuming operations and animal handling. The formalin test is easier to perform, and a well validated model. The latter may serve
as an effective prescreening test of molecules and may facilitate drug targeting. In the present study the activity of different pharmacological
reference compounds was tested in rats and gerbils on the cold plate for animals that had undergone chronic constriction injury and in the second
phase of the formalin test. In rats, a comparable outcome in both test conditions was observed for morphine, fentanyl, MK-801 and flunarizine.
Clonidine had more activity in the second phase of the formalin test, whereas baclofen, tramadol, amitryptiline, ketamine and topiramate showed
more activity in the cold plate. In gerbils, both test conditions yielded comparable results for fentanyl and ketoprofen. Tramadol and CP-96345
tended to have more activity in the second phase of the formalin test, whereas morphine, SR-48968, SR-142801 and R116301 demonstrated more
activity in the cold plate test. This study demonstrates a good correlation between the second phase of the formalin test and the cold allodynia in
the CCI model for, both for rats and gerbils. Drugs with a proven activity in humans, used as reference compounds, also showed good
pharmacological activity in this animal study.
© 2006 Published by Elsevier Inc.
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1. Introduction

The management of neuropathic pain conditions in humans
remains a difficult clinical challenge, because the pathophysio-
logical mechanisms of the induction and the persistence of a
neuropathic pain condition are not yet unraveled, and the different
pain treatment modalities for neuropathic pain are not always
fully efficacious (Finnerup et al., 2005) (Devor and Seltzer, 1999;
Bonica and Loeser, 2001). Clinicians nowadays follow treatment
algorithms based on the use of analgesics and co-analgesics such
as antidepressants, anticonvulsants, local anesthetics and antiar-
rhythmics (MacPherson, 2000; McCleane, 2004).
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Several animalmodels of neuropathic pain have been developed
(Bennett and Xie, 1988; Seltzer et al., 1990; Kim et al., 1995).
These models are based on the induction of neuropathic pain
behavior after induction of a controlled nerve injury. The different
models show various degrees of hypersensitivity to tactile, thermal
and chemical stimuli.(Hofmann et al., 2003; De Vry et al., 2004;
Decosterd et al., 2004; Dowdall et al., 2005; LaBuda and Little,
2005; Walczak et al., 2006) The chronic constriction injury of the
sciatic nerve (Bennett model; CCI model) is one of the best-
characterized models of neuropathic pain behavior (Bennett and
Xie, 1988). The animals are operated to receive 4 ligatures at the
sciatic nerve; they develop an abnormal behavior that is considered
to be representative for the neuropathic pain experienced by
patients. The preparation of these animals is very time consuming
and not all operated animals present the typical abnormal pain
behavior in the different test conditions to the same degree, which
makes the predictability of the neuropathic pain behavior in these
animals difficult (Choi et al., 1994; Desmeules et al., 1995; Kim
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et al., 1997). In contrast to this CCImodel, the formalin test is easier
to perform and to standardize (Dubuisson and Dennis, 1977;
Abbott et al., 1995a). The subplantar injection of formalin results in
flinching and licking or biting behavior during an early acute phase,
which resembles acute pain, followed by a second delayed phase
representative for tonic pain (Dubuisson and Dennis, 1977). This
behavior is quite consistent in its presentation. The acute phase is
believed to represent peripheral pain pathways, whereas the second
phase is indicative of sensitization in central pain conducting
pathways comparable to pain pathways activated in the CCI model
(Vissers et al., 2004). Since different receptors for neurotransmit-
ters, responsible in the pain transmission in animals, are not
necessarily the same as in man, pharmacological evaluation must
be performed. (Maggi, 1995). Because not all pathophysiological
mechanisms of pain transmission are yet known, the pre-clinical
testing in animal models will be important in pharmacological
targeting. Therefore, looking to the different activity profiles of
different classes of analgesic drugs can instruct us about the
underlying pain mechanisms.

In this study, we present the data for several reference drugs
tested in rats and gerbils for the second phase of the formalin test,
and the cold allodynia in animals following CCI. Furthermore, a
pharmacological validation of the formalin test and the CCI
model in gerbils was performed. Finally, it was evaluated
whether the second phase of the formalin test could be used for
pharmacological screening to predict outcome in the cold plate
test in CCI animals.

2. Materials and methods

2.1. General conditions

All studies were conducted following the ethical guidelines of
the IASP (Zimmermann, 1983) and approved by the Local
Animal Care Ethics Committee. Male Sprague Dawley rats
(Harlan), weighing 250–280 g, and male adult gerbils (Meriones
unguiculatus, Crl(MON)BR, Charles River Deutschland, Sulz-
feld, Germany) weighing 60–75 g at the start of the experiment,
were used. The animals were housed individually in standard
rodent cages with sawdust bedding and food andwater ad libitum.
The housing room was air conditioned with a 12/12 h day/night
cycle (lights on 7.00 a.m.). Background noise was produced
during the light period by playing a conventional radio station.
The same surrounding conditions were used in the laboratory.

2.2. Formalin test in rats

The animals were housed individually in standard plastic
observation cages with a wire mesh floor. Rats were habituated
in these housings for 30 min. One hour prior to the intraplantar
injection of 0.05 ml of 5% formalin in the right hind paw, the
animals were injected intraperitoneally (IP) with the test
compound and replaced in the individual observation housing.
Immediately after the intraplantar injection of formalin, the
number of paw flinches and licking or biting were recorded for
the first 5 min (early phase) and between 20 to 25 and 40 to
45 min (late phase) following formalin injection. The data of the
late phase were summed and defined as formalin second phase.
(Vissers et al., 2003, 2004).

2.3. Formalin test in gerbils

The individual test housings were rubber floored and held a
back mirror to assist observation. Gerbils were habituated in
these housings for 30 min. One hour prior to the intraplantar
injection of 0.05 ml of 5% formalin in the right hind paw, the
animals were injected IP with the test compound and replaced in
the individual observation housing. Evaluation of pain behavior
was similar as for the rats.

2.4. Sciatic nerve ligation in rats

The rats were anesthetized by the subcutaneous administration
of 1 ml solution containing fentanyl 50 μg and dehydrobenzperidol
l5 mg (Thalomonal®) and separately 40 mg/kg IP sodiumpento-
barbital. The common sciatic nerve of the left hind paw was
exposed at the level of the middle of the thigh by blunt dissection
through the biceps femoris. Proximal to the sciatic's trifurcation,
7 mm of nerve was freed and four loose ligatures of 4–0 chromic
gut were placed around the sciatic nerve. Great care was taken to tie
the ligatures such that the diameter of the nerve was seen to be just
barely constricted when viewed with a microscope using a 40×
magnification. After surgery all animals received 1.25 mg/kg
naloxone IP as an antagonist for the Thalamonal® anesthesia to
fasten the recovery, prevent further cooling of the animals and to
prevent respiratory depression in the absence of further surgical
stimulation. After checking for haemostasis, the muscle, the
adjacent fascia and the skin were closed with sutures.

2.5. Sciatic nerve ligation in gerbils

The animals were anesthetized with 60 mg/kg IP sodium-
pentobarbital. The sciatic nerve was exposed in a similar way as
for the rat procedure, and 4 loose chromic catgut ligatures (6/0
Chromic catgut, Ethicon Inc, Somerville, NJ, USA) were placed
around the sciatic nerve.(Meert et al., 2003).

2.6. Cold plate test in CCI rats

Cold plate testing was performed in a cage with transparent
acrylic walls (height 30 cm) and ametal plate floor of 30×30 cm,
7 days after CCI surgery. The surface of the cold plate was
cooled by a flow-through cooling apparatus which holds the
surface temperature stable on — 0.5±0.5 °C (Julabo F 25®,
Juloba Labortechnik, Seelback, Germany). The animal was
placed on the cold plate and the duration of lifting of both the left
and right hind paw was measured over 5 min. Only rats with a
difference in lifting time >25 s between the ligated and non-
ligated paw were used for drug testing.

2.7. Cold plate test in CCI gerbils

For testing cold allodynia in gerbils, the animals were placed
on a metal plate in a transparent, circular plexiglas cage with
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diameter of 190 mm, 7 days after surgery. The temperature
(−4 °C) of the cold plate was selected on the basis of a
preliminary trial comparing normal animals with CCI ligated
animals as described previously (Meert et al., 2003). The
number of times that the animal lifted the left or the right hind
limb off the platform and the duration of the lifts were
separately recorded during a 5 min observation period. Limb
movements that were considered a part of the animals' normal
movement (walking) were not included in the assessment. Only
animals with a lifting time >10 s were used for drug testing.

2.7.1. Administration of the test compounds in CCI operated
animals

The CCI operated animals meeting the selection criteria,
7 days after surgery, were injected IP with a test compound and
reevaluated 60 min later on the cold plate. The results after
treatment were individually compared with those of the selection
test. Each animal only received one test compound.

2.8. Drugs tested in the formalin experiments

After habituation (see above), the animals were treated IP with a
test compound and 30 min later; the rat or gerbil formalin test was
performed. In rats, the tested compounds (see alsoTable 1) included
saline, vehicle solutions, morphine, fentanyl, codeine, tramadol;
clonidine; paracetamol; ketamine, MK-801; baclofen; amitrypti-
line; lamotrigine, carbamazepine, gabapentin and topiramate,
suprofen and flunarizine. In gerbils, following compounds were
additionally tested: ketoprofen; the tachykinin NK-1 antagonists:
R116301, GR-203040; the tachykinin NK-2 antagonist: SR-48968
and the tachykinin NK-3 antagonist: SR-142801. At each dose, the
results of 7 animals were collected. The control animals received
either an injection with saline or one of the different vehicle
solutions used.

2.9. Drugs tested on cold allodynia in CCI animals

After selection, animals with a clear cold allodynia (more
than 25 s lifting on the cold plate for rats and 10 s lifting on a cold
plate for gerbils) were treated IP with the test compound.
One hour later, the cold plate test was repeated. In rats, the tested
compounds included saline, vehicle solutions, morphine,
fentanyl, tramadol, clonidine, ketamine, MK-801, baclofen,
amitryptiline, lamotrigine, carbamazepine, gabapentin and
topiramate, suprofen and flunarizine. In gerbils, following
compounds were additionally tested: codeine, paracetamol,
ketoprofen, the tachykinin NK-1 antagonists: R116301, CP-
96345, tachykinin NK-2 antagonist: SR-48968 and tachykinin
NK-3 antagonist: SR-142801. At each dose, the results of 5–10
animals were collected. The control animals received either an
injection with saline or one of the different vehicle solutions.

2.10. Statistics

For statistical analysis the Fisher exact probability test was
used based on the number of active animals tested in the drug
treated and control groups (Two tailed; Siegel, 1958). To
calculate the correlation between cold allodynia in CCI animals
and second phase formalin the Spearman Rank order correlation
test was used by Sigmastat version 2.0 (SPSS, Chicago, 1997).

3. Results

3.1. Data from control animals

3.1.1. Formalin testing
Because no differences were observed in control animals

between saline and the different vehicles, these data were
pooled.

3.1.1.1. Formalin test in rats. For the formalin test in rats, the
total time of flinching and licking or biting behavior of the late
phase in seconds for the observation periods T 20 to T 25 and T 40
to T 45 min was summed. A total number of 531 control animals
were evaluated. These animals reached a mean flinching and
licking or biting time of 106.8±1.9 s. Based on an all-or-none
criterion, a reduction in pain behavior activity to less than 21 swas
chosen for drug activity. This was reached in less than 3% of the
controls (See Table 1).

3.1.1.2. Formalin test in gerbils. For the formalin test in
gerbils, the total time of flinching and licking or biting of the late
phase in seconds for the period T 20 to T 25 and T 40 to T 45min
was taken together. A total number of 548 control animals were
evaluated. These animals reached a mean flinching and licking
or biting time of 143.7±3.4 s. Activity for drug testing was set
here at lower than 45 s; this value was reached by less than 1.5%
of the controls. (See Table 1).

3.1.2. Cold plate test
Also, for the cold plate test no differences in control animals

between saline and the different vehicle solutions were
measured and data were pooled. The total number of tested
control animals is described in Table 1.

3.1.2.1. Cold plate test in CCI rats. For the cold plate test in
CCI rats, the total time lifting the left hind paw for a period of
5 min was measured before and 1 h after IP drug treatment with
the study compounds. A total number of 735 control animals
were evaluated. Tested control animals reached a pretreatment
mean lifting time of 63.3±1.6 s and a post treatment mean
lifting time of 66.9±1.9 s which is 100.4±2.5% of the
pretreatment lifting time. The criterion for activity of a test
compound was set at a post drug lifting time being <25% of the
pretreatment lifting time. Less then 6% controls reached this
level. (See Table 1).

3.1.2.2. Cold plate test in CCI gerbils. For the cold plate test
in CCI gerbils, the total time lifting the left hind paw for a period
of 5 min was taken before and 1 h after IP treatment with the
study compound. A total number of 305 vehicle controls were
evaluated. Tested control animals reached a pretreatment mean
lifting time of 38.2±1.7 s and a post treatment mean lifting time
of 31.0±1.9 s which is 90.5±3.5% of the pretreatment time.



Table 1
Overview of all data with different compounds tested: Dose-orderly data are obtained for rats and gerbils for both the second phase of the formalin test in non operated
animals and the cold allodynia represented as the lifting time on the cold plate for CCI operated animals

Class Compound Dose mg/kg Rat Gerbil

Bennett Cold plate Formalin second phase Bennett Cold plate Formalin second phase

Active/tested 44/735 15/531 15/305 7/548
% 5.9 2.8 5.0 1.2

μ agonists Morphine 0.01 0
0.04 20 28⁎

0.16 28⁎ 14 43⁎⁎

0.63 21 0 57⁎⁎⁎ 71⁎⁎

2.5 36 10 74⁎⁎⁎ 57⁎⁎

10 73⁎⁎ 80⁎⁎ 100⁎⁎⁎ 71⁎⁎

40 100⁎⁎ 100⁎⁎ 100⁎⁎⁎ 100**
Fentanyl 0.00063 20

0.0025 28
0.01 14 28 0
0.04 28 14 28 14
0.16 43⁎⁎ 57⁎⁎ 100⁎⁎⁎ 71⁎⁎

0.63 57⁎⁎ 100⁎⁎ 100⁎⁎⁎

Codeïne 0.16 0
2.5 20 14 0
10 40⁎ 57⁎⁎⁎ 0
40 60⁎⁎ 100⁎⁎⁎ 0

Tramadol 0.63 14 14
2.5 20 14 0 0
10 26 43⁎⁎ 43⁎⁎ 0
40 66⁎⁎ 100⁎⁎ 100⁎⁎⁎ 100⁎⁎

2.5 100⁎⁎ 100⁎⁎ 100⁎⁎

Para-aminophenol derivatives Paracetamol 0.63 14
2.5 0
10 0 14 0
40 14 0 0
160 100⁎⁎ 71⁎⁎⁎ 14

NMDA antagonists Ketamine 0.63 0
2.5 28⁎ 14
10 0 0 0
40 43⁎⁎ 28⁎

MK-801 0.04 16 0 0
0.16 86⁎⁎ 57⁎⁎ 28 14
0.63 57⁎⁎ 100⁎⁎ 28 50⁎⁎

GABA-B agonist Baclofen 0.63 14 0
2.5 28 28⁎ 14
10 100⁎⁎ 100⁎⁎ 86⁎⁎

40 100⁎⁎ 100⁎⁎ 100⁎⁎

Tricyclic antidepressant Amytriptiline 0.63 14
2.5 0 0
10 14 43⁎⁎ 14
40 50⁎⁎ 100⁎⁎ 86⁎⁎

Anti-epileptics Lamotrigine 2.5 14 14 0
10 28 28⁎ 28⁎

40 43⁎⁎ 86⁎⁎ 100⁎⁎

Carbamazepine 2.5 0
10 14 0 0
40 14 43⁎⁎ 57⁎⁎

Gabapentin 2.5 0
10 7 14 43⁎⁎

40 28 28⁎ 57⁎⁎

160 86⁎⁎ 28⁎

Topiramate 0.63 14 0
2.5 43⁎⁎ 0
10 0 14 0
40 66⁎⁎ 0 20⁎

80 14
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Class Compound Dose mg/kg Rat Gerbil

Bennett Cold plate Formalin second phase Bennett Cold plate Formalin second phase

NSAID Suprofen 10 11 0 0
40 11 0 0
160 0 0

Ketoprofen 0.16 20
0.63 0 0
2.5 43⁎⁎⁎ 20⁎

10 57⁎⁎⁎ 0
40 71⁎⁎⁎ 0

Calcium channel blocker Flunarizine 10 0 0 0
40 86** 100** 14

Tachykinin NK-1 antagonist R116301 0.16
0.63 0 0
2.5 10 20⁎

10 16 40⁎⁎

40 53⁎⁎ 80⁎⁎

CP-96345 0.16 0
0.63 14
2.5 14 20⁎

10 57⁎⁎⁎ 0
40 87⁎⁎⁎

GR-203040 0.63 0 0
2.5 20 40⁎⁎

10 0 20⁎

40 0 20⁎

Tachykinin NK-2 antagonist SR-48968 2.5 20 0
10 33 20⁎

40 50⁎⁎ 20⁎

Tachykinin NK-3 antagonist SR-142801 0.63 11
2.5 21 0
10 33 33⁎

40 49⁎⁎ 0

Given for each dose tested are the percentages of animals reaching the activity levels as defined by the all-or-none criterion. Statistical differences were calculated by
the Fisher exact probability test for animals tested in a group of 7 animals statistical. Significance is reached at 28% for p<0.018 represented as ⁎ and at 43% for
p<0.001 represented as ⁎⁎. For animals tested in a group of 5 animals, statistical significance is reached at 40% for p<0.005 represented as ⁎ and at 60% for
p<0.0003 represented as ⁎⁎⁎. All tested compounds are represented by their generic name and classified in their compound class. No experimental data were
obtained for the lines where no data were presented.

Table 1 (continued )
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The criterion for activity of a test compound was set at a post
drug lifting time being <25% of the pretreatment time. Less
then 5% controls reached this level. (See Table 1).

3.2. Data from animals in test conditions

Table 1 summarizes all data obtained with the different test
compounds from rats and gerbils, both in the cold allodynia
testing on the cold plate in CCI animals, and in the second phase
of the formalin test. Active doses of each of the experimental
compounds are indicated by asterisk in the specific condition.
The data obtained, mostly represent dose orderly results,
indicating in most of the test compounds that the higher the
dose the higher the effect observed.

Statistical analysis: For animals, tested in a group of 7
animals statistical significance is reached at 28% for p<0.018
(⁎) and at 43% for p<0.001 (⁎⁎). For animals tested in a group
of 5 animals, statistical significance is reached at 40% for
p<0.005 (*) and at 60% for p<0.0003 (⁎⁎).

Overall, morphine, fentanyl, tramadol, baclofen and cloni-
dine were active in both tests in rats and in gerbils.
Amitryptiline, lamotrigine, carbamazepine and gabapentin
were more active in the formalin second phase than on the
cold plate test. The reverse was true for codeine, topiramate,
ketoprofen, flunarizine, MK-801 and ketamine. Paracetamol
was only active in very high dosages. Suprofen was without
any effect. Fig. 1 shows the minimal doses of the test
compounds providing a statistical significant effect in CCI
animals and in the second phase of the formalin test in rats;
Spearman Rank order correlation test was obtained between
compounds that were active in both test conditions (correlation
coefficient r=0.72; p<0.05). Morphine, fentanyl, MK-801
and flunarizine demonstrated a good correlation between both
tests. Clonidine was more active in the formalin second phase,
whereas baclofen, tramadol, amitryptiline, ketamine, lamotri-
gine and topiramate tended to be more active on the cold plate
in the CCI operated animals. In rats, codeine and paracetamol
were not tested in CCI animals; both compounds were tested in
the formalin second phase. Paracetamol was only active in
very high doses in the second phase of the formalin test. In
CCI rats, carbamazepine and gabapetin showed no activity in
the doses tested, whereas, in the formalin second phase, they
were active. The NSAID suprofen was not active in the CCI or
in the formalin test.



Fig. 2. Shows the correlations of the effect obtained with different experimental
compounds for the cold allodynia evaluated by the cold plate test in CCI
operated gerbils (x-axis) and the second phase of the formalin test in non-
operated gerbils (y-axis): the minimal statistical significant active doses for each
condition is represented on a dose response logarithmic scale. The Spearman
Rank correlation test calculated a correlation coefficient of r=0.68 for those
tested compounds that were active in both test conditions. (# represent
compounds only active in the formalin test, ° represents compounds only active
in the CCI test).

Fig. 1. Shows the correlations of the effect obtained with different experimental
compounds for cold allodynia evaluated by the cold plate test in CCI operated
rats (x-axis) and the second phase of the formalin test in non-operated rats (y-
axis): the minimal statistical significant active doses for each condition is
represented on a dose response logarithmic scale (mg/kg). The Spearman Rank
correlation test calculated a correlation coefficient of r=0.72 for those tested
compounds that were active in both test conditions. (# represent compounds
only active in the formalin test, ° represents compounds only active in the CCI
test).
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Fig. 2 shows the minimal doses of the test compounds
providing statistical significant effect in CCI animals and the
second phase of the formalin test in gerbils: Spearman Rank
order correlation test was obtained between compounds that
were active in both test conditions (correlation coefficient
r=0.68; p<0.05). In gerbils, fentanyl and ketoprofen demon-
strated a good correlation between both test conditions. CP-
96345 and tramadol were more active in the formalin test
whereas morphine, R116301, SR-48968 and SR-142801 tended
to be more active on the cold plate in CCI operated animals. In
gerbils, ketamine, flunarizine and suprofen were not active.
Paracetamol was tested in both conditions but only active in the
very high dosages. MK-801 and GR-203040 were only active in
the formalin test but not in the CCI animals. Codeine
demonstrated activity in the CCI model but not in the formalin
test. Baclofen, amitryptiline and the antiepileptics showed
activity in the formalin second phase. They were not tested in
the CCI animals.

4. Discussion

The present study was undertaken to compare the results of
reference drugs with a proven efficacy and investigational
compounds with a potential efficacy in the treatment of
neuropathic pain, on the cold allodynia in CCI operated animals
and on the pain behavior in the second phase of the formalin test.

In the acute test conditions, there is a good correlation in
pharmacological activity between the second phase of the
formalin test and the cold allodynia as evaluated by the total
lifting time on the cold plate in CCI rats and gerbils for the
reference compounds evaluated except for the NK related agents.
Additionally, this study validates the formalin test in gerbils.
It is demonstrated that this test can easily be performed in these
animals. The results obtained here are comparable to the results
in other rodents (Dubuisson and Dennis, 1977; Abbott et al.,
1995b). This validation is important since specific receptors,
which are believed to be of importance in induction and
maintenance of neuropathic pain states, are species specific. For
example, tachykinin NK receptors of rats are different from
human tachykinin NK receptors, whereas the tachykinin NK
receptor of the gerbil is similar to the human NK receptor
(Beresford et al., 1991; Maggi, 1995). Specific clinical relevant
drug testing of this receptor must therefore be performed in
gerbils and not in rats. Therefore, we additionally evaluated NK
receptor antagonists only in gerbils.

In this study a good correlation between both test conditions
for morphine, fentanyl, MK-801 and flunarizine was found in
rats (see Fig. 1). Clonidine tended to have more activity in the
second phase of the formalin test than in the cold plate test in
CCI animals. Baclofen, tramadol, amitryptiline, ketamine and
topiramate show to be more active in the cold plate test.
Carbamazepine, gabapentin, suprofen had no activity at all in
the tested doses in the cold plate allodynia in CCI animals.

In gerbils, a good correlation between both test conditions
for fentanyl and ketoprofen was observed (see Fig. 2). Tramadol
and CP-96345, a selective NK-1 antagonist tended to have more
activity in the second phase of the formalin test than in the cold
plate test in CCI animals, whereas morphine, the NK-2
antagonist SR-48968, the NK-3 antagonist SR-142801, and
the NK-1 antagonist R116301, demonstrated more activity in
the cold plate test. Paracetamol was only active in very high
doses in the cold plate test.
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In the literature, comparable results to these data were found for
(1) μ opioid agonists, which show activity in both species and both
test conditions (Abbott et al., 1981, 1982; Jazat and Guilbaud,
1991; McLaughlin and Dewey, 1994; McCormack et al., 1998;
Tsai et al., 2000; Leung et al., 2001;Oliva et al., 2002), only codeine
shows a lower activity in the gerbil because the conversion from
codeine to morphine is much slower (Oluyomi et al., 1992); (2) the
α2 agonists (Jasmin et al., 1998); (3) the NMDA antagonists
(Vaccarino et al., 1993; Lee and Lee, 2001; Berrino et al., 2003;
Sawynok and Reid, 2003); (4) baclofen (Shafizadeh et al., 1997;
Idanpaan-Heikkila andGuilbaud, 1999; Sabetkasai et al., 1999); (5)
the tricyclic antidepressant (Sawynok and Reid, 2001); (6) the
antiepileptic/anticovulsant: carbamazepine demonstrates only a
partial effect (Idanpaan-Heikkila and Guilbaud, 1999; Blackburn-
Munro et al., 2002; Heughan and Sawynok, 2002; Laughlin et al.,
2002; Lee et al., 2002; Erichsen et al., 2003) whereas gabapentin is
active in the formalin, but less in the CCI model, normally higher
doses are needed to see clinical relevant effects (Cesena and
Calcutt, 1999); (7) the non-steroidal anti-inflammatory drugs are
active in the CCI model (Ossipov et al., 2000); (8) the tachykinin
NK antagonists aremore active in theCCImodel than in the second
phase of the formalin test, the NK-1 antagonist demonstrates better
effect than NK-3 antagonist (Yamamoto and Yaksh, 1991; Santos
and Calixto, 1997; Coudore-Civiale et al., 1998; Henry et al., 1999;
Gonzalez et al., 2000).

This is one of the first studies looking for the correlation
between the results obtained in different test conditions for
standard test compounds of different pharmacological classes.
These correlations do not form a substitute for testing the
different compounds in individual tests. The correlation
between pharmacological activities in different test conditions
needs further validation. When interpreting the different test
results, the species-specific sensitivity for the individual
compounds needs to be taken into consideration. A compound
that shows activity in more than one test has a higher chance to
be a clinical relevant substance. In this study, all drug testing
was done in acute conditions. The evaluation of reference
compounds after a more chronic treatment period might be
useful to make correlations with human data possible (Kontinen
and Meert, 2003). Depending on the evaluated drug classes, a
different, well selected, species might be needed to fully
elaborate the possible activities of clinical relevant drugs. In
order to further evaluate the present results, additional
correlations with human clinical results should be obtained.

In conclusion, a correlation between the results obtained with
second phase of the formalin test and the cold allodynia in CCI
operated animals is found. The results of the tested drugs compared
with the published efficacy in human studies, show a correlation
between animal and human studies in these specific circumstances
(Kontinen and Meert, 2003). Further validation studies are needed
to make these correlations clinically applicable.
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